Produkt zum Begriff Natural Language Processing NLP:
-
Real-World Natural Language Processing
Voice assistants, automated customer service agents, and other cutting-edge human-to-computer interactions rely on accurately interpreting language as it is written and spoken. Real-world Natural Language Processing teaches you how to create practical NLP applications without getting bogged down in complex language theory and the mathematics of deep learning. In this engaging book, you’ll explore the core tools and techniques required to build a huge range of powerful NLP apps.about the technologyNatural language processing is the part of AI dedicated to understanding and generating human text and speech. NLP covers a wide range of algorithms and tasks, from classic functions such as spell checkers, machine translation, and search engines to emerging innovations like chatbots, voice assistants, and automatic text summarization. Wherever there is text, NLP can be useful for extracting meaning and bridging the gap between humans and machines.about the bookReal-world Natural Language Processing teaches you how to create practical NLP applications using Python and open source NLP libraries such as AllenNLP and Fairseq. In this practical guide, you’ll begin by creating a complete sentiment analyzer, then dive deep into each component to unlock the building blocks you’ll use in all different kinds of NLP programs. By the time you’re done, you’ll have the skills to create named entity taggers, machine translation systems, spelling correctors, and language generation systems. what's insideDesign, develop, and deploy basic NLP applicationsNLP libraries such as AllenNLP and FairseqAdvanced NLP concepts such as attention and transfer learningabout the readerAimed at intermediate Python programmers. No mathematical or machine learning knowledge required.about the authorMasato Hagiwara received his computer science PhD from Nagoya University in 2009, focusing on Natural Language Processing and machine learning. He has interned at Google and Microsoft Research, and worked at Baidu Japan, Duolingo, and Rakuten Institute of Technology. He now runs his own consultancy business advising clients, including startups and research institutions.
Preis: 58.84 € | Versand*: 0 € -
Multilingual Natural Language Processing Applications: From Theory to Practice
Multilingual Natural Language Processing Applications is the first comprehensive single-source guide to building robust and accurate multilingual NLP systems. Edited by two leading experts, it integrates cutting-edge advances with practical solutions drawn from extensive field experience. Part I introduces the core concepts and theoretical foundations of modern multilingual natural language processing, presenting today’s best practices for understanding word and document structure, analyzing syntax, modeling language, recognizing entailment, and detecting redundancy. Part II thoroughly addresses the practical considerations associated with building real-world applications, including information extraction, machine translation, information retrieval/search, summarization, question answering, distillation, processing pipelines, and more. This book contains important new contributions from leading researchers at IBM, Google, Microsoft, Thomson Reuters, BBN, CMU, University of Edinburgh, University of Washington, University of North Texas, and others. Coverage includes Core NLP problems, and today’s best algorithms for attacking them Processing the diverse morphologies present in the world’s languagesUncovering syntactical structure, parsing semantics, using semantic role labeling, and scoring grammaticalityRecognizing inferences, subjectivity, and opinion polarityManaging key algorithmic and design tradeoffs in real-world applications Extracting information via mention detection, coreference resolution, and eventsBuilding large-scale systems for machine translation, information retrieval, and summarizationAnswering complex questions through distillation and other advanced techniquesCreating dialog systems that leverage advances in speech recognition, synthesis, and dialog managementConstructing common infrastructure for multiple multilingual text processing applications This book will be invaluable for all engineers, software developers, researchers, and graduate students who want to process large quantities of text in multiple languages, in any environment: government, corporate, or academic.
Preis: 49.21 € | Versand*: 0 € -
Transfer Learning for Natural Processing
Building and training deep learning models from scratch is costly, time-consuming, and requires massive amounts of data. To address this concern, cutting-edge transfer learning techniques enable you to start with pretrained models you can tweak to meet your exact needs. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre takes you hands-on with customizing these open source resources for your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results even when working with limited label data, all while saving on training time and computational costs.about the technologyTransfer learning enables machine learning models to be initialized with existing prior knowledge. Initially pioneered in computer vision, transfer learning techniques have been revolutionising Natural Language Processing with big reductions in the training time and computation power needed for a model to start delivering results. Emerging pretrained language models such as ELMo and BERT have opened up new possibilities for NLP developers working in machine translation, semantic analysis, business analytics, and natural language generation.about the bookTransfer Learning for Natural Language Processing is a practical primer to transfer learning techniques capable of delivering huge improvements to your NLP models. Written by DARPA researcher Paul Azunre, this practical book gets you up to speed with the relevant ML concepts before diving into the cutting-edge advances that are defining the future of NLP. You’ll learn how to adapt existing state-of-the art models into real-world applications, including building a spam email classifier, a movie review sentiment analyzer, an automated fact checker, a question-answering system and a translation system for low-resource languages. what's insideFine tuning pretrained models with new domain dataPicking the right model to reduce resource usageTransfer learning for neural network architecturesFoundations for exploring NLP academic literatureabout the readerFor machine learning engineers and data scientists with some experience in NLP.about the authorPaul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. He founded Algorine Inc., a Research Lab dedicated to advancing AI/ML and identifying scenarios where they can have a significant social impact. Paul also co-founded Ghana NLP, an open source initiative focused using NLP and Transfer Learning with Ghanaian and other low-resource languages. He frequently contributes to major peer-reviewed international research journals and serves as a program committee member at top conferences in the field.
Preis: 49.21 € | Versand*: 0 € -
Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, Natural Language Processing, and Transformers Using TensorFlow
NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results"To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals."--From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA"Ekman uses a learning technique that in our experience has proven pivotal to successasking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us."--From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning InstituteDeep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience.After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images.Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning.Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagationSee how DL frameworks make it easier to develop more complicated and useful neural networksDiscover how convolutional neural networks (CNNs) revolutionize image classification and analysisApply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequencesMaster NLP with sequence-to-sequence networks and the Transformer architectureBuild applications for natural language translation and image captioningNVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others.Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Preis: 43.86 € | Versand*: 0 €
-
Wie beeinflusst NLP (Natural Language Processing) die Entwicklung von Chatbots in der Kundenbetreuung und im Kundenservice?
NLP ermöglicht es Chatbots, natürliche Sprache zu verstehen und darauf zu reagieren, was die Interaktion mit Kunden natürlicher und effektiver macht. Durch NLP können Chatbots Kundenanfragen besser interpretieren und relevante Informationen liefern, was zu einer verbesserten Kundenerfahrung führt. Die kontinuierliche Weiterentwicklung von NLP-Technologien ermöglicht es Chatbots, komplexere Anfragen zu verarbeiten und personalisierte Antworten zu generieren, was die Effizienz und Wirksamkeit im Kundenservice steigert. NLP trägt dazu bei, dass Chatbots kontinuierlich lernen und sich verbessern, um den sich ständig ändernden Anforderungen und Bedürfnissen der Kunden gerecht zu werden.
-
Wie beeinflusst NLP (Natural Language Processing) die Entwicklung von Chatbots in der Kundenservice-Branche und in der medizinischen Diagnose?
NLP ermöglicht es Chatbots, natürliche Sprache zu verstehen und darauf zu reagieren, was die Interaktion mit Kunden im Kundenservice verbessert. In der medizinischen Diagnose kann NLP dazu beitragen, große Mengen an medizinischen Daten zu analysieren und relevante Informationen für die Diagnose bereitzustellen. Durch die Integration von NLP in Chatbots können sie auch komplexe medizinische Fragen beantworten und Patienten unterstützen. Insgesamt trägt NLP dazu bei, die Effizienz und Genauigkeit von Chatbots in der Kundenservice-Branche und in der medizinischen Diagnose zu verbessern.
-
Wie hat sich NLP (Natural Language Processing) in den Bereichen der Sprachverarbeitung, maschinellen Übersetzung und Chatbot-Entwicklung weiterentwickelt?
NLP hat sich in den Bereichen der Sprachverarbeitung, maschinellen Übersetzung und Chatbot-Entwicklung weiterentwickelt, indem fortschrittliche Algorithmen und Modelle wie Transformer und BERT entwickelt wurden, die eine bessere Verarbeitung natürlicher Sprache ermöglichen. Durch den Einsatz von Deep Learning und neuronalen Netzwerken konnten maschinelle Übersetzungssysteme verbessert werden, um präzisere und natürlichere Übersetzungen zu liefern. In der Chatbot-Entwicklung wurden NLP-Modelle eingesetzt, um Chatbots zu trainieren, die menschenähnliche Konversationen führen können und eine bessere Benutzererfahrung bieten. Die Integration von NLP in Sprachverarbeitungssystemen hat dazu beigetragen, dass sie besser in der Lage sind, natürliche Sprache zu
-
Wie hat sich NLP (Natural Language Processing) in den Bereichen der künstlichen Intelligenz, der Spracherkennung und der maschinellen Übersetzung weiterentwickelt?
NLP hat sich in den Bereichen der künstlichen Intelligenz, der Spracherkennung und der maschinellen Übersetzung weiterentwickelt, indem fortschrittliche Algorithmen und Modelle entwickelt wurden, die eine bessere Verarbeitung und Interpretation natürlicher Sprache ermöglichen. Durch den Einsatz von Deep Learning und neuronalen Netzwerken konnten NLP-Systeme eine höhere Genauigkeit und Leistung bei der Sprachverarbeitung erreichen. Zudem wurden große Fortschritte bei der maschinellen Übersetzung erzielt, indem mehrsprachige Modelle und kontextbezogene Übersetzungen entwickelt wurden. Insgesamt hat die Weiterentwicklung von NLP dazu beigetragen, dass künstliche Intelligenz-Systeme besser in der Lage sind, natürliche Sprache zu verstehen, zu verarbeiten und zu
Ähnliche Suchbegriffe für Natural Language Processing NLP:
-
Brilliant NLP
Master the tools of NLP and become more effective, more efficient, more powerful and more successful NLP can provide powerful tools and techniques to help you make positive changes in your life. This book clearly explains how NLP works and includes plenty of exercises to help you put the theory intro practice. This new edition gives you everything you need to know about NLP and how to do it – with more tips, examples, techniques and insights to show how NLP can work for you. Understand and master NLP step by step Discover how to apply NLP to your life, right now Change your thinking; change your life The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
Preis: 12.83 € | Versand*: 0 € -
Bundle NLP-Practitioner Lehrbuch + NLP-Master Lehrbuch (Dannemeyer, Petra~Dannemeyer, Ralf)
Bundle NLP-Practitioner Lehrbuch + NLP-Master Lehrbuch , NLP-Practitioner Lehrbuch: Petra und Ralf Dannemeyer präsentieren in diesem Grundlagenwerk alle Theorien und Interventionen der Practitioner-Stufe, also der Grundlagen-Ausbildung. NLP-Master Lehrbuch: Petra Dannemeyer und Ralf Dannemeyer präsentieren alle Theorien und Interventionen der Master-Stufe und begleiten den Leser auf seinem Weg zur Meisterschaft im NLP. Somit ist dieses Buch die perfekte Vorbereitung und Begleitung einer curricularen Master-Ausbildung. , Nachschlagewerke & Lexika > Fachbücher, Lernen & Nachschlagen , Erscheinungsjahr: 20181130, Produktform: Leinen, Autoren: Dannemeyer, Petra~Dannemeyer, Ralf, Seitenzahl/Blattzahl: 664, Keyword: NLP; Buch; Modelling; Neurolinguistisches Programmieren, Fachschema: NLP - Neurolinguistische Programmierung ~Studium, Fachkategorie: Psychologie~Hochschulbildung, Fort- und Weiterbildung, Thema: Verstehen, Warengruppe: HC/Angewandte Psychologie, Fachkategorie: Neurolinguistische Programmierung (NLP), Thema: Optimieren, Text Sprache: ger, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Junfermann Verlag, Verlag: Junfermann Verlag, Verlag: Junfermann Verlag, Länge: 238, Breite: 175, Höhe: 45, Gewicht: 1171, Produktform: Gebunden, Genre: Geisteswissenschaften/Kunst/Musik, Genre: Geisteswissenschaften/Kunst/Musik, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0002, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 64.00 € | Versand*: 0 € -
Brilliant NLP Workbook
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. In this workbook, NLP trainers, David Molden and Pat Hutchinson, have gathered the very best NLP techniques from years of teaching and training people from all walks of life. Each exercise has been chosen for maximum impact to ensure brilliant results, every time. Designed as a complete, step-by-step programme, it details every core aspect of NLP, from creating compelling outcomes and changing old habits right through to personal strategies for success and modelling excellence. Ideal for personal or professional use, it provides an invaluable resource to help you or your clients achieve their very best in life.
Preis: 13.9 € | Versand*: 0 € -
Digital Video Processing
Over the years, thousands of engineering students and professionals relied on Digital Video Processing as the definitive, in-depth guide to digital image and video processing technology. Now, Dr. A. Murat Tekalp has completely revamped the first edition to reflect today’s technologies, techniques, algorithms, and trends. Digital Video Processing, Second Edition, reflects important advances in image processing, computer vision, and video compression, including new applications such as digital cinema, ultra-high-resolution video, and 3D video. This edition offers rigorous, comprehensive, balanced, and quantitative coverage of image filtering, motion estimation, tracking, segmentation, video filtering, and compression. Now organized and presented as a true tutorial, it contains updated problem sets and new MATLAB projects in every chapter. Coverage includes Multi-dimensional signals/systems: transforms, sampling, and lattice conversion Digital images and video: human vision, analog/digital video, and video quality Image filtering: gradient estimation, edge detection, scaling, multi-resolution representations, enhancement, de-noising, and restoration Motion estimation: image formation; motion models; differential, matching, optimization, and transform-domain methods; and 3D motion and shape estimation Video segmentation: color and motion segmentation, change detection, shot boundary detection, video matting, video tracking, and performance evaluation Multi-frame filtering: motion-compensated filtering, multi-frame standards conversion, multi-frame noise filtering, restoration, and super-resolution Image compression: lossless compression, JPEG, wavelets, and JPEG2000 Video compression: early standards, ITU-T H.264/MPEG-4 AVC, HEVC, Scalable Video Compression, and stereo/multi-view approaches
Preis: 97.36 € | Versand*: 0 €
-
Wie hat sich NLP (Natural Language Processing) in den Bereichen der künstlichen Intelligenz, der Sprachverarbeitung und der maschinellen Übersetzung weiterentwickelt?
NLP hat sich in den Bereichen der künstlichen Intelligenz, der Sprachverarbeitung und der maschinellen Übersetzung weiterentwickelt, indem es fortschrittliche Algorithmen und Modelle wie neuronale Netzwerke und Deep Learning einsetzt. Diese Technologien ermöglichen es, natürliche Sprache besser zu verstehen, zu verarbeiten und zu übersetzen. Durch die Integration von NLP in verschiedene Anwendungen wie Chatbots, Spracherkennungssysteme und Übersetzungstools hat sich die Leistungsfähigkeit und Genauigkeit der Sprachverarbeitung und maschinellen Übersetzung erheblich verbessert. Darüber hinaus hat die Verfügbarkeit großer Datenmengen und die kontinuierliche Weiterentwicklung von NLP-Modellen zu einer besseren Anpassung an verschiedene Sprachen und Spr
-
Wie wird NLP (Natural Language Processing) in der Medizin eingesetzt, um medizinische Texte zu analysieren und wichtige Informationen zu extrahieren?
NLP wird in der Medizin eingesetzt, um medizinische Texte wie Arztbriefe, Patientenakten und wissenschaftliche Artikel zu analysieren. Dabei werden wichtige Informationen wie Diagnosen, Behandlungen und Symptome extrahiert. Dies ermöglicht eine schnellere und präzisere Auswertung von medizinischen Daten. Zudem kann NLP auch zur Identifizierung von Trends, Mustern und Risikofaktoren in großen Mengen von medizinischen Texten verwendet werden.
-
Wie wird NLP (Natural Language Processing) in der Medizin eingesetzt, um medizinische Texte zu analysieren und wichtige Informationen zu extrahieren?
NLP wird in der Medizin eingesetzt, um medizinische Texte wie Arztbriefe, Patientenakten und wissenschaftliche Artikel zu analysieren. Dabei werden wichtige Informationen wie Diagnosen, Behandlungen und Symptome extrahiert. Diese Informationen können dann für die klinische Entscheidungsfindung, Forschung und Qualitätssicherung genutzt werden. NLP hilft dabei, große Mengen an medizinischen Texten effizient zu verarbeiten und relevante Informationen zu identifizieren, um die Patientenversorgung zu verbessern.
-
Wie wird NLP (Natural Language Processing) in der Medizin eingesetzt, um medizinische Texte zu analysieren und wichtige Informationen zu extrahieren?
NLP wird in der Medizin eingesetzt, um medizinische Texte wie Arztbriefe, Patientenakten und wissenschaftliche Artikel zu analysieren. Dabei werden wichtige Informationen wie Diagnosen, Behandlungen und Symptome extrahiert. Diese Informationen können dann für die klinische Entscheidungsfindung, Forschung und Qualitätssicherung genutzt werden. Durch die Anwendung von NLP können große Mengen an medizinischen Texten effizient verarbeitet und wichtige Erkenntnisse gewonnen werden.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.